

General characteristics

This range of insulators and partition bushings provides for connecting and supporting low- and medium-voltage electrical equipment.

- Their purpose is to provide electrical and mechanical insulation for equipment or conductors subject to differing potentials.

In designing this range, particular attention was paid to the shapes (registered pattern) to facilitate the connection of the two lugs on the same threaded spindle.

- At the same time, the mechanical and electrical characteristics comply with all the standards in force, in particular for the railway industry.

Of all insulating material, fibre-glass polyester compounds are among the best compromises for the mechanical and electrical characteristics they provide.

The insulators are compression-moulded, for optimum mechanical characteristics.

Applications:

Railway rolling stock, insulation of wiring and supports isolating from sub-assemblies.

Definitions	
Rated operating voltage (Ue)	The rated operating voltage of an item of equipment is the voltage which, associated with a rated operating current, determines the use of the equipment in the categories determined by testing.
	For single-pole equipment, the rated operating voltage is usually expressed in terms of the voltage across that pole. For equipment with more than one pole, it is usually expressed in terms of the voltage between the phases (IEC et NF EN 60947).
Flashover voltage	Disruptive discharge outside the insulator and along its surface, between parts normally subject to the operating voltage (NF C 01-471).
Rated insulation voltage (Ui)	The rated insulation voltage of an item of equipment is the voltage value used for the dielectric tests.
	Under no circumstances should the highest rated operating voltage exceed the rated insulation voltage.
Torque	Tightening torque to be applied in type testing to validate the product's minimal quality.
Tightening torque	Torque to be applied by the user to ensure good electric contact and mechanical attachment.

Selection

- An insulator has to sastify the following requirements: Mechanical Thermal Electrical
- To order to choose an insulator it is important determine :

The electrodynamics strength;

The distance between each support;

The flex strength.

Choice of material

Among all the insulating material, the glass filled polyester compounds are the best compromise in regard of the mechanical and electrical characteristics.

The insulators are produced by compression by molding in order to obtain the best mechanical characteristics.

Low and medium voltage - Insulators

Polygonal insulators

General characteristics

Compliance with standardsThis generation of insulators was designed to the requirements of standard NF F 61-016. The polygonal insulators are according to RoHs regulation (depending on model).Insulation materialFibre-glass polyester compound.ColourGrey RAL 7035Operating temperature- 40°C to + 130°CFire classificationUL94-VO & EN 45545Attachment partsSteel, class 6/8ProtectionGalvanised 8μ with reinforced passivation without Cr VI .

Electrical characteristics

Per NF F 61-016

Туре		H15N &	IH15N	H26N &	IH26N	H35N 8	& IH35N	H50N 8	& IH50N	H60N 8	k IH60N
Flashover voltage	(kV)	9		12		17		22		25	
Minimum creepage	(mm)	10		25		32		48		58	
Actual creepage (measured on our naked insulators)	(mm)	15		27		34		49.5		60	
Insulation resistance	(M Ω)	>10 ⁶		>10 ⁶		>10 ⁶		>10 ⁶		>10 ⁶	
Rated operating voltage U	е	2,5 kV	1,25 kV	4 kV	2 kV	5kV	2,5kV	8kV	4kV	10kV	5kV
depending on degree of pollution (A	AC/DC voltage)	°2	°3	°2	°3	°2	°3	°2	°3	°2	°3

^{°2} non-conductive pollution present in normal concentrations

(RoHS)Salt spray resistance according to IEC & NF EN 60 068-2-11:96h

The EN 50 124-1 allows other working voltages, according to the electric shock voltage assigned and the pollution level (contact us).

Mechanical characteristics

Distance between bearing	g surfaces (mm)	15		26		35		50		60
Insert diameter	(mm)	Ø4	Ø5	Ø6	Ø8	Ø8	Ø10	Ø10	Ø12	Ø14
Torque*	(N.m)	2.9	5.7	9.6	14	24	45	45	81	130
Tensile strength	(N)	2 800	2 800	7 500	7 500	14 000	14 000	26 000	26 000	37 000
Bending strength	(N)	1 250	1 250	2 800	2 800	10 000	10 000	14 000	14 000	18 000
Compressive strength	(N)	25 000	25 000	32 000	32 000	70 000	70 000	100 000	100 000	180 000

^{*} max. tightening torque for mechanical attachment

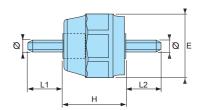
^{°3} conductive pollution present

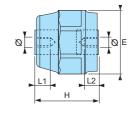
Polygonal insulators

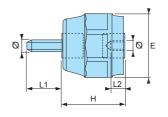
Part numbers and dimensions

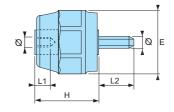
Part number breakdown

TYPE	Useful insert Ø	M 20 = Male insert	F = Female Insert
H26N ou IH26N	6	M20	F


length 20 mm




The references below match products normally kept in stock.


Other types, dimensions, characteristics of insulators, contact us.

	Part number	RoHS Part number	Н	Ø	L1	L2	Е	Weight Kg
male / male	H15N 5 M10 M10	IH15N 5 M10 M10	15	5	10	10	Ø18	0.012
Insulators	H26N6 M15 M15 H26N8 M25 M25	IH26N6 M15 M15 IH26N8 M25 M25	26 26	6 8	15 25	15 25	Ø26 Ø26	0.038 0.048
female / female Insulators	H26N 4 F F H26N 6 F F H26N 8 F F	IH26N 6 F F IH26N 8 F F	26 26 26	4 6 8	9 9 9	9 9 9	Ø26 Ø26 Ø26	0.030 0.030 0.030
	H35N 8 F F H35N 10 F F	IH35N 8 F F IH35N 10 F F	35 35	8 10	12 12	12 12	Ø41 Ø41	0.092 0.087
	H50N 10 F F H50N 12 F F	IH50N 10 F F IH50N 12 F F	50 50	10 12	17 17	17 17	Ø50 Ø50	0.206 0.200
	H60N 14 F F	IH60N 14 F F	60	14	21	21	Ø60	0.346
male / female Insulators	H26N 6 M20 F H26N 8 M25 F	IH26N 6 M20 F IH26N 8 M25 F	26 26	6 8	20 25	9	Ø26 Ø26	
	H35N 8 M25 F	IH35N 8 M25 F	35	8	25	12	Ø41	0.118

Packaging

Références	Quantité
H15N ou IH15N H26N ou IH26N H35N ou IH35N H50N ou IH50N H60N ou IH60N	200 100 25 10

Low and medium voltage - Insulators

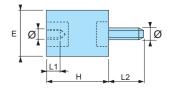
Cylindrical insulators

These insulators with forms cylindrical are in accordance with the directive RoHS The cylindrical shape and small diameters resolve space problems.

Application:

- Installing and insulating power circuit housings.

Electrical characteristics


Туре		DC22	DC35	DC50
Sparkover voltage	(kV50 Hz)	10	20	25
Surface resistance	(M Ω/cm with 500V applied)	2x10 ⁶	2x10 ⁶	2x10 ⁶
Insulation resistance	(M Ω with 500V applied)	>10 ⁶	>10 ⁶	>10 ⁶
Capacitance	(p F at 1 Kc/s)	10	10	10

Mechanical characteristics

Tensile strength	(N)	2400	3200	4000
Tightening torque	(Nm)	5	13	13

Part numbers and dimensions

Part number *	Н	Ø	L1	L2	Ε	Weight Kg
C22 6 F M9	22	6	8	9	Ø18	0.020
C35 8 F M15	35	8	12	15	Ø20	0.030
C50 8 F M15	50	8	12	15	Ø25	0.055

Packaging

Part number	Quantity
C22	100
C35	100
C50	50

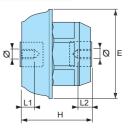
^{*} Contact us for other insulator types, dimensions, characteristics.

Low and medium voltage - Insulators

Umbrella insulators

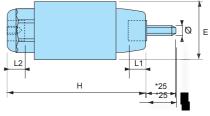
The spacial shape of these so-called «umbrella» insulators increases the creepage and prevents conductive deposits from covering the entire surface of the insulator.

Electrical characteristics


Туре		DP50S	DP100S
Sparkover voltage	(kV50 Hz)	25	25
Surface resistance	(M Ω/cm with 500V applied)	2x10 ⁶	2x10 ⁶
Insulation resistance	(M Ω with 500V applied)	2x10 ⁶	2x10 ⁶
Capacitance	(p F at 1 Kc/s)	25	10

Mechanical characteristics

Tensile strength	(N)	23 000	13 000
Bending strength transverse	effort (N)	11 000	2 500
Torsion strength	(Nm)	80	40
Tightening torque (insert)	(Nm)	Ø10=26 Ø12=45	Ø8=13 Ø10=26


Part numbers and dimensions

Part number	Н	Ø	L1	L2	Е	Weight Kg
P50S 10 F F	50	10	18	18	Ø70	0.220
P50S 12 F F	50	12	18	18	Ø70	0.220
P100S 8 F F	100	8	12	12	Ø49	0.300
P100S 10 F F	100	10	12	12	Ø49	0.300
P100S 8 M25 F8	100	8	25*	12(Ø8)	Ø49	0.300
P100S 8 M25 F10	100		25*	12(Ø10)	Ø49	0.300

Hex 46 above flats

Contact us for other insulator types, dimensions, characteristics.

Hex 36 above flats

Packaging

Part number	Quantity
P50S	10
P100S	5

Insulating partition bushings

Introduction

- These partition bushings may be made watertight by the addition of a silicon gasket P/N JMS 025 A1 (withstands a temperature of 100° C). In this event, use M8 screws with smooth shanks for 4 fixing points

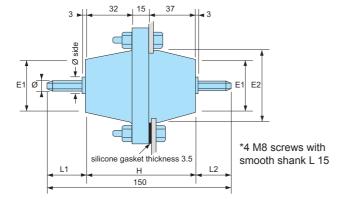
Application:

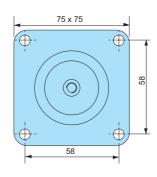
- Feedinf an electric liaison through a "fire-containment" partition (EN 45545)

Electrical characteristics

Туре		DT90S	Captive spindle brass UZ40 I	MNA	Captive spindle stainless steel Z10 CF 17
Max. current	(A)	400 460 540 600	(face Ø 16 -M8) (face Ø 18 -M10) (face Ø 22 -M12) (face Ø 24 -M14)	200 230 270 300	(face Ø 18 - M10) (face Ø 22 - M12)
Rated voltage	(V)	1 500			
Flashover voltage for partition 5 mm thick	(kV)	22			
Insulation category	NFC 20 040	D			
Dielectric strength	(kV)	18			

Mechanical characteristics


Туре		Captive spindle brass UZ40 N	ΛNA	Captive spindle stainless steel Z10 CF 17
Tightening torque(electrical connexion) (N	Nm) 7.5	(face Ø 16 -M8)	9.5	(face Ø 16 - M8)
	14.5	(face Ø 18 -M10)	18.5	(face Ø 18 - M10)
	25	(face Ø 22 -M12)	31	(face Ø 22 - M12)
	40	(face Ø 24 -M14)	50	(face Ø 24 - M14)
			1	


Tightening torque (mechanical fixing) (Nm) 7 Tighten the 4 screws evenly and progressively

Weight (Kg) 625 From 0.540 to 0.700, according to captive spindle Ø

Part numbers and dimensions

Captive brass type	Н	Ø	L1	L2	E1	E2	Captive stainless steel type	Н	Ø	L1	L2	E1	E2
T90S 8 L M20 M30	84	8	23	33	Ø45	Ø55	T90S 8 I M20 M30	84	8	23	33	Ø45	Ø55
T90S 8 L M30 M30	84	8	33	33	Ø45	Ø55	T90S 8 I M30 M30	84	8	33	33	Ø45	Ø55
T90S 10 L M30 M30	84	10	33	33	Ø45	Ø55	T90S 10 I M30 M30	84	10	33	33	Ø45	Ø55
T90S 12 L M30 M30	84	12	33	33	Ø45	Ø55	T90S 12 I M30 M30	84	12	33	33	Ø45	Ø55
T90S 14 L M30 M30	84	14	33	33	Ø45	Ø55	T90S 14 I M30 M30	84	14	33	33	Ø45	Ø55

Packaging

Individual

Insulating partition bushings

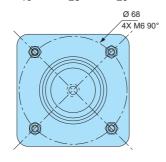
Introduction

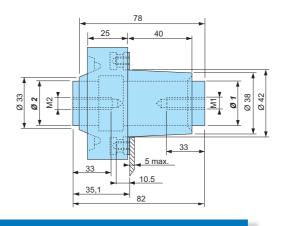
- Insulation material: Polyester
- 4 threaded nickel brass inserts «high resistance».
- Nickel brass inner feed-through tin lead finish "hight resistance".

Application:

- Railway rolling stock : power connection for the engine gearbox units in locomotives.

Electrical characteristics


Operating temperature		- 40°C to + 130°C
Max. current	(A)	600
Rated voltage	(kV)	3
Dielectric strength	(kV)	10
Sparkover test (kV)		> 35 kV after 24 hrs immersed in water
Tensile strength test		Rr > 200 daN at 60 mm from the attachment zone on both ends
Torsion strength test		16 daNm


Mechanical characteristics

Tightening torque (electrical connexion)	(Nm) -	7.5 14.5 25 40	(M8) (M10) (M12) (M14)
Tightening torque (mechanical fixing)	(Nm)	4	Tighten the 4 screws evenly and progressively
Weight	(Kg)	0.625	

Part numbers and dimensions

Part number	M1	M2	Ø1	Ø2
MDS 075 A1	8	8	28	29
MDS 075 B1	12	12	28	29
MDS 075 C1	12	10	28	29
MDS 075 D1	12	10	29.9	29.9
MDS 075 F1	10	10	28	29

Packaging

Individual

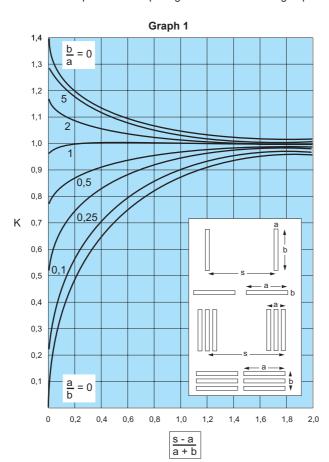
Insulators and insulating partition bushings

How to select an insulator based on the terminal crossbar and short-circuit current

The load that an insulator is capable of withstanding corresponds to the electro-dynamic stress arising at the time of the short circuit.

Its value corresponds to a force F applied to the conductor's centre of gravity.

When selecting an insulator, start by calculating the resultant bending moment, and then choose an insulator with a breaking load above that.

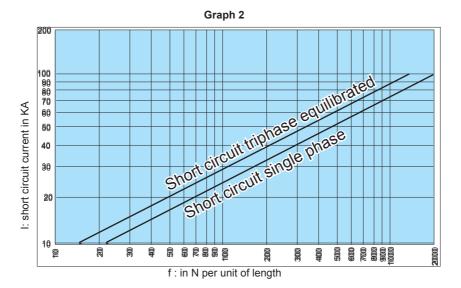

Data required:

- 1 I = short circuit current in KA
 - . for alternating current : if le is the short circuit RMS value then $l=1,8\sqrt{2}$. le
 - . for direct current : I = short circuit current
- 2 a and b = cross-section of the crossbar per phase; in mm
- 3 s = separation between the phases; in mm
- 4 L = span between 2 insulators for the same phase; in mm

A) Determining the form factor

From graph 1, determine the coefficient K as a function of the cross-section and of the layout of the bars.

- 1) calculate the expression : $\frac{s-a}{a+b}$
- 2) calculate the expression : $\frac{\mathbf{a}}{\mathbf{b}}$
- 3) locate \mathbf{K} on the corresponding curve.
- "a" represents the thickness of the bar or group of bars.
- "b" represents the height of the bar or group of bars.
- "s" represents the spacing between the bars or group of bars.



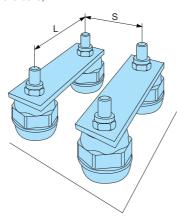
Isolateurs et traversées de cloisons isolantes

B) Determining the force acting on a unit of length

From graph 2, determine the force "f" acting on a bar 10 mm thick as a function of the short circuit current.

C) Calculate the force exerted on the insulator support

$$F = f \times \frac{L}{S} \times K$$


F:in N

f : calculate in B) above

 ${\bf K}$: calculate in A) above

L = span between 2 insulators; in mm

S = spacing between the bars; in mm

D) Choosing the insulator

Choose an insulator whose strength is greater than the resultant value of "F".

Insulators

Recommendations for mounting an insulator

Tightening torque values for electrical connections (Nm)

This table copies the stipulations of the NF F61-016 standard.

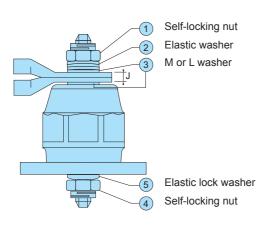
nominal Ø		Copper connection	1	Aluminium connection			
male or female in mm	M/L washer 3-part washer	M/L washer CS washer	M/L washer 3-part washer H FR nut	M/L washer 3-part washer	M/L washer CS washer	M/L washer 3-part washer H FR nut	
4	+	+	+	+	+	+	
5	2.5	3	-	1.9	2.4	-	
6	3.8	5	5.8	2.7	3.5	4.7	
8	10	13	15	6	8	11	
10	20	26	30	13	17	23	
12	35	45	50	23	30	38	
14	55	70(*)	80	38	50(*)	63	

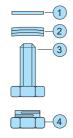
Instructions for correct tightening

Tighten the screws or nuts with a torque wrench or electric screwdriver, per the values in the table above.

- (+) Not be used in tightening torque for electrical connections
- (-) Not used
- (*) Must be avoided if possible

Avoid this




Support with your hand

Mounting principe for a complete unit

Example of correct insulator mounting. The user must take care to calculate the length of the spindle so as to produce the desired length for «J». Mounting accessories; washers and nuts are not provided by MAFELEC.

Connection mounting(not exposed to the elements) Type of fastenings:

at M or L washer, VH 160, NF E25-514, Zn 12 / D / Fe.

2 conical smooth elastic 3-part washer, with protection Zn8 / D / Fe (NF A 91-102) or CS washer (conical striated) Zn8 / D / Fe (NF E 25-511)

Depending on the type of insulator : or female insert : H, M screw, minimum class 5.8; Zn⁽¹⁾ / D / Fe (NF E 25-114)

for male insert: H FR, M nut, minimum class 6; Zn⁽¹⁾ / D / Fe (NF E 25-411)

(1) thickness of finish - Zn5 fur Ø < 8mm

- Zn8 fur Ø > 8mm